BQP: Efficient Quantum Computation

1. Definition

Let $A = (A_{ves}, A_{no})$ be a promise problem and let $c, s: \mathbb{N} \to [0,1]$ be functions. Then $A \in BQP(c, s)$ if and only if there exists a *polynomial*time uniform family of quantum circuits $\{Q_n : n \in \mathbb{N}\}$, where Q_n takes nqubits as input and outputs 1 bit, such that

• if
$$x \in A_{ves}$$
 then $Pr[Q_{|x|}(x) = 1] \ge c(|x|)$, and

• if
$$x \in A_{no}$$
 then $\Pr[Q_{|x|}(x) = 1] \le s(|x|)$.

The class BQP is defined as BQP = BQP(2/3,1/3).

2. Error reduction for BQP

Theorem. Let $p: \mathbb{N} \to \mathbb{N}$ be a polynomially bounded function satisfying $p(n) \ge 2$ for all n. Then it holds that BQP = BQP $(1 - 2^{-p}, 2^{-p})$.

Idea: repeat the computation many times and take majority vote

Chernoff bound.

3. BQP subroutine theorem

Theorem. $BQP^{BQP} = BQP$.

4. Complexity classes of oracle machines

An oracle is a subset $B \subseteq \Sigma^*$, an oracle Turing machine with oracle Battached is a Turing machine which may call the oracle B at intermediate computational steps and the call counts as a single step.

 P^B , NP^B , ...

Oracles in the circuit model: in addition to the usual gates, we have a family of big gates $\{O_m\}$ such that

$$O_{|y|}(y) = \begin{cases} 1 & y \in B, \\ 0 & y \notin B. \end{cases}$$

For a complexity class C, we define

$$P^{C} = \bigcup_{B \in C} P^{B}$$

NP^{NP} and the polynomial hierarchy

In the quantum case, we adopt the form of the oracle access as $O_m|y,a\rangle = |y,a \oplus O_m(y)\rangle$

5. Proof

What do we need to prove?

D 0 0 1 0

extend the ability of the machine

5. Prooi

What do we need to prove?

Two difficulties:

- 1. The output of a BQP circuit is probabilistic
- 2. We need to simulate the behaviour of the O_m gate on all qubits

6. Relation with classical friends

- BPP: Same as BQP, but uses (random) classical circuits
- PP: Same as BPP, but with c > 1/2 and $s \le 1/2$

#P

- PSPACE: A promise problem A is in PSPACE if and only if there exists a deterministic Turing machine running in polynomial space that accepts every string $x \in A_{ves}$ and rejects every string $x \in A_{no}$
- PH: Polynomial hierarchy

Meet more complexity animals at Complexity Zoo!

 $P \subseteq BPP \subseteq BQP \subseteq QMA \subseteq PP \subseteq PSPACE$

Conjecture. BQP is not contained in NP and vice versa.

mulAphiation

7. BQP vs PP

Theorem. BOP ⊆ PP

- · GapP functions
- A function $g: \Sigma^* \to \mathbb{Z}$ is a *GapP function* if there exists a polynomial pand a polynomial-time computable funcion f such that

$$g(x) = \#\{y \in \Sigma^{p(|x|)}: f(x,y) = 0\} - \#\{y \in \Sigma^{p(|x|)}: f(x,y) = 1\}$$
$$= \sum_{y \in \Sigma^{p(|x|)}} (-1)^{f(x,y)}.$$

- Lemma: A promise problem is in PP if and only if there is a GapP function g such that
 - a. if $x \in A_{yes}$ then g(x) > 0, and
 - b. if $x \in A_{no}$ then $g(x) \le 0$.
- Fact: quantum computational universality of H and Toffoli

• Quantum computing is all about estimating the first entry of unitary

Encode amplitudes as GapP functions

path integral

Figure 1: The internal part C' of a circuit C corresponding to the polynomial $x_1x_2 + x_2x_3 + x_4x_5 + x_5x_5 +$ $x_6x_7 + x_2x_4 + x_2x_5x_7 + x_7$.

Screen clipping taken: 5/9/2020 5:21 PM

een clipping taken: 5/9/2020 5:21 PM
$$C = H^{\otimes n} C' H^{\otimes n}$$

$$f_{c} \text{ over } n+h \text{ birary variables}$$

arX;, : 1667.08473

8. Exercise 3

Write down a definition of BQP without looking at any reference. Compare it with the definition given above and see if you have missed anything.

9. Exercise 4

Prove the error reduction theorem for BQP.