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BQP: Efficient Quantum Computation

1. Definition

Let A = (Ayes, Ano) be a promise problem and let ¢, s: N — [0,1] be
functions. Then A € BQP(c, s) if and only if there exists a polynomial-
time uniform family of quantum circuits {Q,: n € N}, where Q,, takes n
qubits as input and outputs 1 bit, such that

* if x € Ayeg then Pr[Q)y (x) = 1] = ¢(|x]), and

« if x € Ay, then Pr{Qy (x) = 1] < s(|x). X i Q,

The class BQP is defined as BQP = BQP(2/3,1/3).

2. Error reduction for BQP

Theorem. Let p: N = N be a polynomially bounded function satisfying
p(n) = 2 for all n. Then it holds that BQP = BQP(1 — 277,27P),

ldeg: Wféout the @Wﬁ\/\ many times and take gy Uste
Oherhof(— bomd.

3. BQP subroutine theorem

Theorem. BQPEQP = BQP.

4. Complexity classes of oracle machines ]Mrw}_ —lxqoe
An oracle is a subset B € X, an oracle Turing machine with oracle B mm
attached is a Turing machine which may call the oracle B at orade
intermediate computational steps and the call counts as a single step. ‘ ploo | o] <
P5, NP5, ...
Oracles in the circuit model: in addition to the usual gates, we have a W@ﬂd the db\W\H’j 0{\'
family of big gates {0,,} such that the machine

1 ye€B,
O ) = {0 yeB.

For a complexity class C, we define
Pt = UBeCPB
NPNP and the polynomial hierarchy

In the quantum case, we adopt the form of the oracle access as
Omly,a) = |y,a @ 0n(y))

5. Proof

What do we need to prove?
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J. Froor =
=0,

What do we need to prove? -

Two difficulties:

1. The output of a BQP circuit is probabilistic T T

2. We need to simulate the behaviour of the O, gate on all qubits

| exror reduction

2 {le the m
Urount fwmué%’ri‘f B

6. Relation with classical friends

¢ BPP: Same as BQP, but uses (random) classical circuits
« PP: Same as BPP, but with ¢ > 1/2 and s < 1/2 HP

e PSPACE: A promise problem A4 is in PSPACE if and only if there
exists a deterministic Turing machine running in polynomial space
that accepts every string x € A, and rejects every string x € Ay,

e PH: Polynomial hierarchy

Meet more complexity animals at Complexity Zoo!
/ P € BPP € BQP € QMA < PP < PSPACE

Conjecture. QP is not contained in Kf? and vice versa.
YMMM'((?JA'@J‘W'M ’fa(mﬁj TQRF
7. BQP vs PP Cotatt fj
Theorem. BQP € PP.

¢ GapP functions

¢ Afunction g: X* — Zis a GapP function if there exists a polynomial p
and a polynomial-time computable funcion f such that

g(x) = #{y € ZPUD: f(x,y) = 0} — #{y € 2PID: f(x,y) = 1}

= (— DI,
yerplx) /Co
¢ Lemma: A promise problem is in PP if and only if there is a GapP Cl \(*2
function g such that 7/ /\

C
a. if x € Aye5 then g(x) > 0, and 3 () (5 C¢

b. if x € A, then g(x) < 0. H ( \/(7( W) _—_‘)
w 7

¢ Fact: quantum computational universality of H and Toffoli

. H j-gr vee| omphtules are ensiyh

Founder classi el
¢ Quantum computing is all about estimating the first entry of unitary

circuits
1
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\OSM B (U a“ﬁ“) + (oﬁ L{Jr <||X1]®I) U ]o”>

¢ Encode amplitudes as GapP functions Paﬂ‘ i Y\'}%‘mf
Iy ra e L3
H | {H |
T4 {? x: C
I Iy

Figure 1: The internal part " of a cirenit C' corresponding to the polynomial @19 + xomy + 2475 +

TEI7 + Ty + TaXsT7 + I7.
Screen clipping taken: 5/9/2020 5:21 PM
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8. Exercise 3

Write down a definition of BQP without looking at any reference.
Compare it with the definition given above and see if you have missed
anything.

9. Exercise 4

Prove the error reduction theorem for BQP.
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