

 $-|t\rangle\langle t-1|_{clock} \otimes U_t - |t-1\rangle\langle t|_{clock} \otimes U_t^{\dagger})$ $H_{prop} = \sum_{t=1}^{T} H_{prop}^{(t)}.$

The Hamiltonian corresponding to the circuit is $H = H_{in} + H_{out} + H_{prop}$, and we set $a = 1/T^{10}$ and $b = 1/4(T + 1)^3$.

Proof

- 1. Completeness. Easy to check!
- 2. Soundness. If $x \in A_{no}$, the Hamiltonian *H* has energy at least *b*
- Analyse the spectrum of $H_{io} = H_{in} + H_{out}$ and H_{prop}
- Consider the ground spaces *N*_{io} and *N*_{prop} of *H*_{io} and *H*_{prop} respectively
- Define $R = \sum_{t=0}^{T} U_t \cdots U_1 \otimes |t\rangle \langle t|$
 - a. H_{io} is a projector, the second eigenvalue is 1
 - b. H_{prop} has a special form under the conjugation of *R* and the second eigenvalue is at least $1/2(T + 1)^2$
 - c. have a noticeable angle θ with $\sin^2(\theta/2) \ge 1/2(T+1)$
 - From $O(\log(T))$ -local to 5-local

1

0

not well aligned

 $R^{+}H_{prop}R = E_{clock} \otimes I$ $E_{clock} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \\ -\frac{1}{2} & 1 & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}$

 $Q_k = k \pi (T_{++})$

For the estimate of $A_2|_{\mathcal{L}_2^{\perp}}$ we need to find the smallest positive eigenvalue of the matrix E. The eigenvectors and eigenvalues of E are

$$|\psi_k
angle=lpha_k\sum_{j=0}^{k}\cos\Bigl(q_k\bigl(j+rac{1}{2}
ight)\Bigr)|j
angle,\qquad\lambda_k=1-\cos q_k,$$

- Standard error reduction: requires multiple copies of the quantum witness state
- Strong error reduction: a single copy of quantum witness state suffices

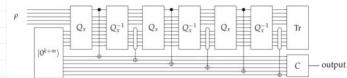


Figure 10: Illustration of the strong error reduction procedure for QMA. The circuit Q_x represents a unitary purification of a given QMA verification procedure on an input *x*, while the circuit *C* determines whether to accept or reject based on the number of alternations of its input qubits. The quantum proof is denoted by ρ .

4. Discussions

een clipping taken: 9/10/2020 12:33 PM

1. QMA (local Hamiltonian problem) and optimization

Maximize: $tr(H\rho)$

Subject to: ρ is semidefinite positive and trace 1

- 2. Other complete problems for QMA
 - 1-D local Hamiltonian problem
 - Circuit non-identity
 - Density matrix consistency / N-representability
- 3. Variants of QMA

5. Exercise 5

Prove that the local Hamiltonian problem is in QMA.

6. Exercise 6

For which circuit is the EPR state $\frac{|00\rangle+|11\rangle}{\sqrt{2}}$ a history state? Write down the Hamiltonian for this circuit and check that the EPR state is the ground state of that Hamiltonian.

7. Research Problem

Understand the relation of QMA and its variants QCMA, QMA₁, QMA(2).